Глава 8. Функция двух переменных
Если указано правило, согласно которому с каждой точкой М плоскости (или какой-нибудь части плоскости) сопоставляется некоторое число u, то говорят, что на плоскости (или на части плоскости) «задана функция точки»; задание функции символически выражается равенством вида u=f(M). Число u, сопоставляемое с точкой М, называется значением данной функции в точке М. Например, если А - фиксированная точка плоскости, М - произвольная точка, то расстояние от А до М есть функция точки М. В данном случае f(m)=AM.Пусть дана некоторая функция u=f(M) и вместе с тем введена система координат. Тогда произвольная точка М определяется координатами x, y. Соответственно этому и значение данной функции в точке М опеределяется координатами x, y, или, как еще говорят, u=f(M) есть функция двух переменных x и y. Функция двух переменных x и y обозначается символом f(x; y): если f(M)=f(x;y), то формула u=f(x; y) называется выражением данной функции в выбранной системе координат. Так, в предыдущем примере f(M)=AM; если ввести декартову прямоугольную систему координат с началом в точке А, то получим выражение этой функции:
.
146 Даны две функции P и Q, расстояние между которыми равно а, и функция , где d1=MP и d2=MQ. Определить выражение этой функции, если в качестве начала координат принята точка P, а ось Ох направлена по отрезку PQ. 147 При условиях задачи 146 определить выражение функции f(M) (непосредственно и при помощи преобразования координат, используя результат задачи 146), если: 147.1 Начало координат выбрано в середине отрезка PQ, ось Ох направлена по отрезку PQ. 147.2 Начало координат выбрано в точке Р, а ось Ох направлена по отрезку QP. 148 Даны квадрат ABCD со стороной a и функция , где d1=MA, d2=MB, d3=MC, d4=MD. Определить выражение этой функции, если за оси координат приняты диагонали квадрата (причем ось Ох направлена по отрезку АС, ось Оу – по отрезку BD). 149 При условиях задачи 148 определить выражение для f(M) (непосредственно и при помощи преобразования координат, используя результат задачи 148), если начало координат выбрано в точке А, а оси координат направлены по его сторонам (ось Ох – по отрезку АВ, ось Оу – по отрезку AD). 150 Дана функция f (x, y)=x2+y2+6x+8y. Определить выражение этой функции в новой системе координат, если начало координат перенесено (без изенения направления осей) в точку О’ (3; –4). 151 Дана функция f (x, y)=x2–y2–16. Определить выражение этой функции в новой системе координат, если координатные оси повернуты на угол –45° . 152 Дана функция f (x, y)=x2+y2. Определить выражение этой функции в новой системе координат, если координатные оси повернуты на некоторый угол a . 153 Найти такую точку, чтобы при переносе в нее начала координат выражение функции f (x, y)=x2–4y2–6x+8y+3=0 после преобразования не содержало членов первой степени относительно новых переменных. 154 Найти такую точку, чтобы при переносе в нее начала координат выражение функции f (x, y)==x2–4xy+4y2+2x+y–7 не содержало членов первой степени относительно новых переменных. 155 На какой угол нужно повернуть координатные оси, чтобы выражение функции f (x, y)==x2–2xy+y2+6x+3 после преобразования не содержало члена с произведением новых переменных? 156 На какой угол нужно повернуть координатные оси, чтобы выражение функции после преобразования не содержало члена с произведением новых переменных?
Текст издания: © Д.В.Клетенник "Сборник задач по аналитической геометрии". М., Наука, Физматлит, 1998
Решение задач: © 2004-2013, Кирилл Кравченко, http://a-geometry.narod.ru/, http://kirill-kravchenko.narod.ru/